LEVERAGING CAPNOGRAPHY FOR SAFER PATIENT CARE

AL HEUER, PHD, MBA, RRT-ACCS, RPFT, FAARC
PROFESSOR, RUTGERS UNIVERSITY
CO-OWNER, A & T LECTURES

LEARNING OBJECTIVES--ETCO2

- OBJECTIVES
 - EXPLAIN INDICATIONS FOR ETCO2
 - DESCRIBE HOW CAPNOGRAPHY ENHANCES PATIENT SAFETY
 - ILLUSTRATE SOME OF THE EQUIPMENT
 - REVIEW RELATED RESEARCH
 - DEFINE WHAT IS A NORMAL ETCO2 VALUE
 - DEFINE WHAT ARE ABNORMAL VALUES/WAVES & THEIR CAUSES
 - IDENTIFY THE DIFFERENT WAVE FORMS
 - FURNISH ADD'L RESOURCES

RELATED TERMINOLOGY

- CAPNOGRAPHY- ANALYSIS OF WAVEFORM (AND OFTEN NUMERIC VALUE) OF EXHALED CO2
- CAPNOMETRY- MEASURING THE NUMERIC VALUE OF EXHALED CO2
- COLORMETRY DICHOTOMOUS MEASUREMENT—PURPLE VERSUS YELLOW.
 - LESS RELIABLE THAN WAVEFORM!!!
 - IN CPR, IF NO CIRCULATION, LITTLE CO2 REACHING THE ALVEOLI = LITTLE COLOR CHANGE.
 - IF HIGH CO2, COLOR MAY STAY YELLOW AFTER INITIAL CHANGE

CAPNOGRAPHY-INDICATIONS

- VENTILATION-ADEQUACY OF VENTILATION & GAS EXCHANGE
- MONITORING MODERATELY SEDATED PATIENTS
- AIRWAY- VERIFICATION OF ET TUBE PLACEMENT
- CIRCULATION
 - CHECK EFFECTIVENESS OF CARDIAC COMPRESSIONS
 - MONITOR LOW PERFUSION STATES
- PREDICTOR OF MORTALITY IN ALI/ARDS?

EQUIPMENT--COLORMETRIC DETECTOR

COMBO CANNULA -- 02 ADMINISTRATION AND ETCO2 MONITORING

LOFLO® AIRWAY ADAPTER KIT

A NEWER INDICATION-CAPNOGRAPHY IN CPR

- ASSESS CHEST COMPRESSIONS
- EARLY DETECTION
 OF ROSC
- OBJECTIVE DATA FOR DECISION TO CEASE RESUSCITATION

ETCO2 & CPR-SOME DATA

- SANDERS, ET AL, JAMA, 1989- ETCO2 CORRELATES TO OUTCOMES IN CPR.
- A 2005 STUDY COMPARING INTUBATIONS THAT USED CAPNOGRAPHY TO CONFIRM ETT PLACEMENT VS. NON-CAPNOGRAPHY USE SHOWED A 0% UNRECOGNIZED MISPLACED ETT AND 23% IN THE NON-ETCO2 MONITORED GROUP
- CONFIRM ETT PLACEMENT WITH WAVEFORM CAPNOGRAPHY!!

STILL MORE DATA- ETCO2 & CPR QUALITY

- CPR QUALITY:
 - BAD CPR = ETCO2 < 15
 - GOOD CPR = ETCO2 > 15
- ROSC = ETCO2 INCREASES
 - SUDDENLY BY 15
 - ETCO2 = 35 40

GRAPHIC DEPICTION OF ROSC

Figure 6. Capnogram Trend Indicating Return Of Spontaneous Circulation

During cardiopulmonary resuscitation, an abrupt rise in ETCO₂ to normal or greater-than-normal levels indicates improved cardiac output and ROSC.

THE OTHER MAJOR INDICATION-MONITORING VENTILATION

- SPONTANEOUS BREATHING PATIENTS
 - NEUROMUSCULAR
 - COPD
- MECHANICALLY VENTILATED PATIENTS
 - CONTINUOUS NONINVASIVE
 - APPROPRIATENESS OF SETTINGS
 - WEANABILITY

THE NUMBERS--NORMAL VALUES

- NORMAL VALUES
 - NORMAL RANGE 7.35 TO 7.45
 - NORMAL ETCO2 IS 30-43MMHG
 - NORMAL PACO2 IS 35-45MMHG

ABNORMAL VALUES--ETCO2

- ABNORMAL VALUES
 - ACIDOSIS
 - PH < 7.35
 - PACO2 > 45
 - ETCO2 > 43
 - ALKALOSIS
 - PH > 7.45
 - PACO2 < 35
 - ETCO2 < 30

OUR RESPONSE TO ABNORMAL ETCO2

- HOW DO WE STABILIZE ABNORMAL ETCO2
 VALUES?
 - BY ADJUSTING MINUTE VENTILATION

- IF ETCO2 IS HIGH ↑ VENTILATION
- IF ETCO2 IS LOW | VENTILATION

WHEN TO ADJUST VT VS. RATE?

- HOW DO WE DECIDE TO FOCUS ON VT OR RR?
 - EXAMINE CURRENT VT, RELATIVE TO RECOMMENDED 5-8 ML / KG.
 - EXAMPLE: IF SEEKING TO DECREASE ETCO2, AND VT IS CURRENTLY AT/NEAR 4-5 MLS / KG, CONSIDER INCREASING VT.
 - EXAMINE CURRENT RR, RELATIVE TO VARIABLES SUCH AS NORMAL RANGE (8-30), I:E RATIO, EVIDENCE OF AUTO-PEEP.

EXAMPLE: NORMAL CAPNOGRAM

Normal capnogram, stable trend ETCO₂/PaCO2 gradient 4 mmHg

NORMAL CAPNOGRAM - PHASE

anatomical deadspace with

no measurable CO2

NORMAL CAPNOGRAM - PHASE II

Mixed CO_2 , rapid rise in CO_2 concentration

NORMAL CAPNOGRAM - PHASES III & IV

ENDOTRACHEAL TUBE IN ESOPHAGUS

- Missed intubation
 - When the ET tube is in the esophagus, little or no CO2 is present
 - ◆A normal capnogram is the best indication of proper ET tube placement

OBSTRUCTION IN AIRWAY OR BREATHING CIRCUIT

- Partially kinked or narrowed artificial airway
- Presence of foreign body in the airway
- Obstruction in expiratory limb of breathing circuit
- Bronchospasm

INADEQUATE SEAL AROUND ET TUBE

- Leaky or uncuffed endotracheal or trach tube
- Artificial airway that is too small for patients

ABNORMAL CAPNOGRAPH

- ◆Decrease in minute ventilation
- ◆Increase in metabolic rate
- ◆Rapid rise in body temperature
- **♦**Less Common:
 - ◆ Absorption of insufflated CO2 from laparoscopy
 - Release of a tourniquet from a surgical limb

COMMON EXAMPLE: HYPOVENTILATION

- → PT. RECEIVES 5MG MS FOR PAIN
- → ETCO2 CLIMBS FROM 37 MMHG TO 45 MMHG

HYPERVENTILATION - DECREASE IN ETCO₂

- Increase in respiratory rate
- ◆Increase in tidal volume
- Decrease in metabolic rate
- ◆ Fall in body temperature

BRONCHOSPASM WAVEFORM PATTERN

- BRONCHOSPASM HAMPERS VENTILATION
 - > ALVEOU UNEVENLY FILLED ON INSPIRATION
 - > EMPTY ASYNCHRONOUSLY DURING EXPIRATION
 - > ASYNCHRONOUS AIR FLOW ON EXHALATION DILUTES EXHALED CO2
- ALTERS THE ASCENDING PHASE AND PLATEAU
 - > SLOWER RISE IN CO₂ CONCENTRATION
 - > CHARACTERISTIC PATTERN FOR BRONCHOSPASM
 - SHARK FIN" SHAPE TO WAVEFORM

CAPNOGRAPHY WAVEFORM PATTERNS

CAUSES OF AN ELEVATED ETCO2

METABOLISM

MALIGNANT HYPERTHERMIA

CIRCULATORY SYSTEM

INCREASED CARDIAC
 OUTPUT - WITH CONSTANT
 VENTILATION

RESPIRATORY SYSTEM

- RESPIRATORY FAILURE
- RESPIRATORY DEPRESSION
- OVERDOSE / SEDATION
- OBSTRUCTIVE LUNG DISEASE

EQUIPMENT

DEFECTIVE EXHALATIONVALVE

CAUSES OF A DECREASED ETCO₂

METABOLISM

- PAIN
- ANXIETY

CIRCULATORY SYSTEM

- CARDIAC ARREST
- EMBOLISM
- SUDDEN HYPOVOLEMIA OR HYPOTENSION

RESPIRATORY SYSTEM

ALVEOLAR HYPERVENTILATION

EQUIPMENT

- LEAK IN AIRWAY SYSTEM
- PARTIAL AIRWAY
 OBSTRUCTION
- ETT IN HYPOPHARYNX

SUMMARY

- CAPNOGRAPHY CAN BE A USEFUL ASSESSMENT TOOL
- UNDERSTAND THAT IT IS A RELATIVELY STRAIGHT FORWARD, BUT
 VALUABLE TOOL—A LITTLE KNOWLEDGE CAN GO A LONG WAY!!!
- KNOW THE INDICATIONS & LIMITATIONS
- RECOGNIZE NORMAL WAVE FORMS/VALUES, THE ABNORMALS AND HOW TO RECTIFY THEM
- KNOW WHERE THERE ARE ADD'L RESOURCES

SELECTED REFERENCES

- AARC.ORG
- EGAN'S FUNDAMENTALS OF RESPIRATORY CARE, ED 12, STOLLER, HEUER, ET AL, 2025.
- O CLINICAL ASSESSMENT IN RESPIRATORY CARE, ED. 9, HEUER 2022.
- RESPIRATORY DISEASE: A CASE STUDY APPROACH TO PATIENT CARE, ED 3, 2007.
- PUBMED
- MEDLINE

